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Explanations of Annotations

This documentation is work in progress, and the TransLucid interpreter itself is also under devel-
opment. As a result, the documentation may include the following different kinds of annotation.

TODO: Items to be added to the documentation.

MISSING: Missing functionality in the implementation.

WRONG: The current implementation is wrong. It needs to be rethought and then fixed.

CLEANUP: The functionality will need extra precision. This might involve more careful error
detection, or more precise specifications.
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Chapter 1

Overview

In this document, we describe in detail how to write TransLucid programs and how to get them
executed. The TransLucid programming environment is accessible in three ways:

libtl: programming in C++, and using the C++ API for the libtl library directly;

tltext: programming in TransLucid textually, using the tltext program on a Unix/Linux box;
and

tlweb: programming in TransLucid textually, using the tlweb Web interface, currently available
at http://translucid.web.cse.unsw.edu.au/tlweb.

For the third case, you are welcome to simply point your browser to the above URL, and to
experiment programming in TransLucid straightaway.

For the first two cases, you must download and install the TransLucid source, written in C++11,
the latest C++ standard, hence you need a working C++11 compiler. Chapter 2 describes in detail
how to do the complete installation, including installing the GNU gcc program.

The rest of the documentation is currently focused on tltext, but much of it will be relevant
for the other cases as well. Documentation for these will be available as the APIs become stable.

TransLucid is a functional programming language in which the “value” of a variable encom-
passes all of its variance, with respect to all of the possible parameters that may influence it.
These parameters are called dimensions, and as a result, a variable defines a multidimensional
entity, where the number of dimensions is unlimited. Each dimension corresponds to a different
parameter, some fixed—such as time—, others created as needed, as would happen when a new
where clause with local parameters were entered, and still others are defined from an initial con-
text created from the settings of the environment variables of the tltext process. However it is
created or manipulated, a runtime context is simply a set of (dimension, ordinate) pairs, defining
all the dimensions relevant to the behavior of the program.

Following is a program written in TransLucid and run in tltext. (Once installed, tltext is
run from the command line, and execution is terminated with Ctl-D.) The program has two parts
divided by %%. In the first part (lines 1–6), we declare three variables and two dimensions, used as
parameters for the variables. Variable fortytwo is constant, and is therefore not affected by these
dimensions. Variable sum varies with respect to both dimensions m and n, while variable fact

varies with respect to dimension n. (We give an overview of the syntax in Chapter 5.)

1 dim m;;

2 dim n;;

3 var fortytwo = 42 ;;

4 var sum = #.m + #.n ;;

5 var fact = if #.n == 0 then 1

6 else #.n * (fact @ [n <- #.n -1]) fi ;;
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7 %%

8 fortytwo ;;

9 fortytwo @ [n <- 10] ;;

10 sum ;;

11 sum @ [m <- 3, n <- 5] ;;

12 fact @ [n <- 10] ;;

The second part of the program (lines 8–12) consists of the expressions to be evaluated. The
program can be run by typing tltext -i p004.tl and the expected output is

TLText...

// instant 1 beginning

// demand 0

42

// demand 1

42

// demand 2

spundef

// demand 3

8

// demand 4

3628800

// instant 1 end

During the evaluation of an expression, there is always a runtime context. This context can
be implicit (defined by the runtime system), or partially defined within the program. Lines 9, 11
and 12 of the example program each partially define a context of evalution, by defining dimensions n
and/or m. Lines 8 and 10 on the other hand, are using the implicit context, with no definitions
for n or m. As expected, fortytwo gives the same result (42) with no further definition of the
context, or when the context yields 10 for dimension n. On the other hand, sum yields an error
(spundef), as it requires the runtime context to have ordinates for dimensions m and n and these
are not defined (line 10); when these are respectively set to 3 and 5 (line 11), the value of sum is 8.
Finally, the evaluation of fact requires continually perturbing the ordinate of n from 10 down
to 0 in order to compute the 10-th factorial number, as defined in line 12.

A running TransLucid program is a TransLucid system S, which is a synchronous, reactive
system. This means that a system S runs through a series of instants, each corresponding to the
special dimension time taking value 0, then value 1, then 2, and so on. In instant 0, system S
starts out empty. In each instant, the user of S may add, replace or delete some declarations before
computation takes place. These declarations, affecting only the semantics of the system from that
instant on, consist of equations, inputs, outputs, and demands for computation of these outputs,
along with configuration information to allow proper parsing of the equations, and importing of
host-language data types and data operators over these types.

In the example below, there are three instants, separated by $$. In each instant, the time

special dimension is being probed.

%%

#.time ;;

$$

%%

#.time ;;

$$

%%

#.time ;;

$$

5



The expected output from a newly started system is

TLText...

// instant 1 beginning

// demand 0

1

// instant 1 end

// instant 2 beginning

// demand 0

2

// instant 2 end

// instant 3 beginning

// demand 0

3

// instant 3 end

If the text were being typed in interactively, then the interleaved input and output would look
like this:

TLText...

%%

#.time ;;

$$

// instant 1 beginning

// demand 0

1

// instant 1 end

%%

#.time ;;

$$

// instant 2 beginning

// demand 0

2

// instant 2 end

%%

#.time ;;

$$

// instant 3 beginning

// demand 0

3

// instant 3 end

In the example below, there are four instants. There is one declaration for y, valid for all
instants, and three declarations for x, each guarded by the current ordinate of the time dimension.

var x [time:1] = 2 ;;

var y = x + 1 ;;

%%

x ;;

y ;;

$$

var x [time:2] = 3 ;;

%%

x ;;

y ;;

$$
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var x [time:3] = 4 ;;

%%

x ;;

y ;;

$$

%%

x ;;

y ;;

$$

The expected output is

TLText...

// instant 1 beginning

// demand 0

2

// demand 1

3

// instant 1 end

// instant 2 beginning

// demand 0

3

// demand 1

4

// instant 2 end

// instant 3 beginning

// demand 0

4

// demand 1

5

// instant 3 end

// instant 4 beginning

// demand 0

spundef

// demand 1

spundef

// instant 4 end

In each instant, the best definition for each variable is chosen. In instant 3, there is no definition
for x, hence the errors for both x and y.

If we add one more declaration for x, as in

var x = 42 ;;

var x [time:1] = 2 ;;

var y = x + 1 ;;

%%

x ;;

y ;;

$$

var x [time:2] = 3 ;;

%%

x ;;

y ;;

$$

var x [time:3] = 4 ;;
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%%

x ;;

y ;;

$$

%%

x ;;

y ;;

then the expected output is

TLText...

// instant 1 beginning

// demand 0

2

// demand 1

3

// instant 1 end

// instant 2 beginning

// demand 0

3

// demand 1

4

// instant 2 end

// instant 3 beginning

// demand 0

4

// demand 1

5

// instant 3 end

// instant 4 beginning

// demand 0

42

// demand 1

43

// instant 4 end

since the very first declaration for x is always valid, but instants 0, 1 and 2 have more precise
definitions of x. This is an example of bestfitting, where the best definition of a variable, with
respect to the current running context, will be chosen when that variable is to be evaluated.

In the example below, the fact variable has two declarations, one for the (zero) base case, one
for the recurrent case.

dim n;;

var fact [n:0] = 1 ;;

var fact [n:1..infty] = #.n * (fact @ [n <- #.n -1]) ;;

%%

fact @ [n <- 10] ;;

The expected output is

TLText...

// instant 1 beginning

// demand 0

3628800

// instant 1 end
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The guard [n:1..infty] means any integer n such that 1 ≤ n <∞. The integers being used are
of type intmp, the GNU arbitrary-precision integer type, and infty is a special variable defined
in TransLucid to represent infinity.

In the sample programs above, we have seen the two key aspects of TransLucid:

• the evaluation of expressions with respect to a dynamic, runtime context, and

• the bestfitting of the declarations of a variable with respect to the context.

As we shall see in the rest of the document, every aspect of the TransLucid language and interpreter
is governed by these aspects. The power of TransLucid lies in taking advantage of these two aspects.
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Chapter 2

Installing TransLucid on a Linux
or Unix machine

2.1 Prerequisites

Installing TransLucid may take a while, because of prerequisites, listed below. Depending on the
state of your system, you may not need to build all of these. For the purposes of discussion, we
assume that the version numbers referred to in the instructions below are the ones we are using.

• gcc 4.7.1 or higher, we are using 4.7.1.

• or, clang from git or svn sources.

• icu 4.6 or higher, we are using 49_1.

• boost 1_46_0 or higher, we are using 1_49_0.

• TransLucid, latest version, currently 0.3.0.

2.2 Summary

This is the full build sequence. If you already have some of these prerequisites, then you will not
need to build everything.

• Set PATH and LD LIBRARY PATH variables.

• Ensure gcc is installed.

• Ensure icu is installed.

• Ensure boost is installed.

• Download TransLucid.

• Install TransLucid.

2.3 Detailed Instructions

TransLucid needs to be compiled with a C++ compiler which supports C++11, the new C++ standard.
We use gcc version 4.7.1 and clang, both of which provide a partial implementation of this
standard. The instructions for using clang are given below.
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The compilation and running of TransLucid also uses a number of the boost libraries. You
will probably need to install a recent version of boost on your system; before this can be done,
you will need to ensure you have recent versions of icu and mpi.

Given that there are many packages to install, we recommend creating a directory called
“soft”. Under this directory, there should be a “downloads” subdirectory to store the downloads,
a “src” subdirectory to do the compilations, and an “install” subdirectory to place the generated
binaries, header files and libraries. The instructions given below assume this setup, which will
make it easier to maintain, clean, remove, update and find the installed packages. All sequences
of instructions assume that you are starting in the soft directory.

If you follow this advice, then all of the installation directories specified after --prefix in
the instructions given below will be this “install” directory. This directory will also need to be
added to the PATH and LD_LIBRARY_PATH environment variables.

Specifically, in the instructions below:

• $SOFT is the full path of the soft directory.

• $SRC is the $SOFT/src directory.

• $DOWNLOADS is the $SOFT/downloads directory.

• $PREFIX is the $SOFT/install directory.

2.3.1 TransLucid from Tarball

TransLucid’s source code is hosted on sourceforge.net and released as a tarball. The latest
release is version 0.3.0. To get the source, type:

cd $SRC

wget \

http://sourceforge.net/projects/translucid/files/TransLucid/0.3.0/tl-0.3.0.tar.bz2/download \

-O tl-0.3.0.tar.bz2

or direct your browser to the above URL. This downloads the distribution tarball as tl-0.3.0.tar.bz2.
To untar it, type:

tar -xf tl-0.3.0.tar.bz2

This creates a new directory, tl-0.3.0, and unpacks the source there. (Note that if you already
downloaded TransLucid from sourceforge yourself, you would know this first step, as you did it
already!)

To build TransLucid:

cd $SRC

cd tl-0.3.0

./configure --prefix="$PREFIX" --disable-static

make

make install

The --disable-static flag will make TransLucid compile faster.
Possibly, you will need to set the PKG_CONFIG_PATH variable to find the icu-uc package.

2.3.2 TransLucid from Git

TransLucid’s source code is hosted on sourceforge.net in a git repository. To get the source:

cd $SRC

git clone \

git://translucid.git.sourceforge.net/gitroot/translucid/translucid \

translucid-git
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This creates a new directory, translucid-git, and clones the source there. (Note that if you
already downloaded TransLucid from sourceforge yourself, you would know this first step, as
you did it already!)

To build TransLucid:

cd $SRC

cd translucid-git

./bootstrap.sh

./configure --prefix="$PREFIX" --disable-static

make

make install

The --disable-static flag will make TransLucid compile faster.
Possibly, you will need to set the PKG_CONFIG_PATH variable to find the icu-uc package.

2.4 TransLucid Clang compilation instructions

First, checkout the llvm sources from their git repository. You also need to checkout clang and
compiler-rt.

cd $SRC

git clone http://llvm.org/git/llvm.git

cd llvm/tools

git clone http://llvm.org/git/clang.git

cd ../projects

git clone http://llvm.org/git/compiler-rt.git

2.4.1 Note for Ubuntu

Ubuntu requires the following to be set before building gcc:

export LIBRARY_PATH=/usr/lib/x86_64-linux-gnu

export C_INCLUDE_PATH=/usr/include/x86_64-linux-gnu

export CPLUS_INCLUDE_PATH=/usr/include/x86_64-linux-gnu

If you have them set, you will need to unset them before compiling llvm:

unset LIBRARY_PATH

unset C_INCLUDE_PATH

unset CPLUS_INCLUDE_PATH

2.4.2 Compiling llvm+clang

You are now ready to build llvm and clang. This needs to be done in a separate build directory.

cd $SRC

mkdir build-llvm

cd build-llvm

$SRC/llvm/configure \

--prefix=$PREFIX \

--enable-optimized=yes \

--enable-assertions=no

make

make install
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2.4.3 Compiling a new libstdc++

The clang compiler uses the libstdc++ libraries provided by gcc. However, for this to work
properly, these libraries need to be patched, then compiled by the clang compiler itself. We
present the process below. We assume that you have a fresh set of gcc sources in directory
$GCCSRC. You can use either the gcc 4.7.1 sources or the gcc development sources.

The patch needs to be downloaded, then applied to the sources:

cd $DOWNLOADS

wget http://clang.llvm.org/libstdc++4.7-clang11.patch

cd $GCCSRC/libstdc++/include/std

patch < $DOWNLOADS/libstdc++4.7-clang11.patch

For Ubuntu users, you will have to reset the three variables:

export LIBRARY_PATH=/usr/lib/x86_64-linux-gnu

export C_INCLUDE_PATH=/usr/include/x86_64-linux-gnu

export CPLUS_INCLUDE_PATH=/usr/include/x86_64-linux-gnu

You are now ready to compile libstdc++:

cd $SRC

mkdir build-gcc-clang

cd build-gcc-clang

$GCCSRC/configure \

--prefix=$PREFIX/gcc-clang \

--disable-multilib \

--enable-languages=c,c++

make stage1-bubble

cd x86_64-unknown-linux-gnu/libstdc++-v3

$GCCSRC/libstdc++/configure \

--prefix=$PREFIX/gcc-clang \

--disable-multilib \

CXX=$PREFIX/bin/clang++ \

CC=$PREFIX/bin/clang

make install

2.4.4 Building TransLucid

Then configure and build TransLucid using the new compiler. The variable $GCCVERSION is set to
the version of gcc that you compiled libstdc++ from; if you used the latest development version,
then this is 4.8.0.

cd $SRC

cd translucid-git

./bootstrap.sh

./configure --prefix=$PREFIX --disable-static \

CC=$PREFIX/bin/clang \

CXX=$PREFIX/bin/clang++ \

CPPFLAGS="-isystem $PREFIX/gcc-clang/include/c++/$GCCVERSION"

make

make install
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Chapter 3

TLtext

The tltext program is the command-line interface to the TransLucid interpreter. TLtext evalu-
ates expressions in a series of instants, one instant at a time, each in a context where the dimension
time is one greater than at the previous instant. It takes as input a sequence of declarations (see
Chapter 5) which add information to the system, followed by the symbol %%, then a sequence of
expressions to evaluate, followed by the symbol $$, at which point the current instant is evaluated,
the results printed to the output, and the system becomes ready to receive more input for the
next instant.

The tltext program responds to the following command-line arguments:

--args arg arguments to pass to TransLucid in the CLARGS variable

-d [ --debug ] debug mode

-h [ --help ] show this message

-i [ --input ] arg input file

-o [ --output ] arg output file

--uuid print uuids

-v [ --verbose ] verbose output

--version show version

The input to TLtext is read from the file given by the argument to --input, or standard
input if none is supplied. The output is written to the file given as the argument to --output,
or standard output if none is supplied. The --uuid option prints the unique universal identifiers
of each declaration as it is added to the system. The --verbose option prints expressions with
the minimum necessary parentheses after parsing the expression and adding it to the system.
The --debug option prints a number of diagnostics, some of which are useful to TransLucid
programmers, others to the developers of the interpreter.

The tltext program can interact with the outside world through all of the means available to
a Linux program, including environment variables, the command line, the return code, standard
input, standard output, standard error, input files, and output files.

3.1 The initial context

The initial context for tltext, used as the default runtime context for the evaluation of expressions,
is defined through the Linux environment and the non-positional command-line options. Suppose,
for example, that running printenv yields these two lines, among others:

TERM=xterm

SHELL=/bin/bash

Suppose furthermore, that the command line is:

tltext --language=French
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and that the input typed in by the user is of the form:

%%

#.TERM ;;

#.SHELL ;;

#.language ;;

the expected output is:

TLText...

// instant 1 beginning

// demand 0

"xterm"

// demand 1

"/bin/bash"

// demand 2

"French"

// instant 1 end

3.2 The return code

In each instant, the variable RETURN is evaluated in a context holding just the current time and
the settings of the environment variables. Its default value is 0, as if there were a declaration from
the beginning

var RETURN = 0 ;;

The user can add other declarations for RETURN. Should, in instant n, the value of RETURN be
non-zero, then the tltext program will halt after completing instant n and place the value held
by RETURN in the return code.

In Linux, return codes must be between 0 and 255. In tltext, return codes 0 through 127 are
reserved for the interpreter, while return codes 128 through 255 are for the TransLucid program-
mer. Should a value outside of 0 through 255 be given to RETURN, then tltext will halt with its
own error code.

For example,

%%

RETURN ;;

$$

var RETURN [time:2] = 255 ;;

%%

RETURN ;;

$$

has expected output

TLText...

// instant 1 beginning

// demand 0

0

// instant 1 end

// instant 2 beginning

// demand 0

255

// instant 2 end
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If you then type echo $? on the command line, the output will be 255.
On the other hand,

%%

RETURN ;;

$$

var RETURN [time:2] = 1000 ;;

%%

RETURN ;;

$$

has expected output

TLText...

// instant 1 beginning

// demand 0

0

// instant 1 end

// instant 2 beginning

// demand 0

1000

// instant 2 end

but typing echo $? on the command line, will yield 2, because 1000 is not a valid return code.

3.3 Passing arguments to TransLucid

All options for the TransLucid interpreter must appear on the command line before the use of the
--args command-line option. Once the token --args appears on the command line, all subsequent
text is considered to be positional command-line arguments to the interpreter.

The positional command-line arguments are numbered from 0 up, and are accessible in the
program by indexing the CLARGS variable with the arg0 dimension, also starting from 0. If n
command-line arguments are provided, indexing beyond position n− 1 will simply yield an empty
string, rather than an error. For example, with the following command line:

tltext --args hello world

and the following input given on standard input:

%%

CLARGS @ [arg0 <- 0] + " " + CLARGS @ [arg0 <- 1] + " " + CLARGS @ [arg0 <- 2] ;;

the following would be printed to standard output:

// instant 1 beginning

// demand 0

"hello world "

// instant 1 end
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Chapter 4

Lexical Conventions

The TransLucid language has been designed to have a very flexible parser, in which new operators
and identifiers can be introduced, for a wide variety of applications and in a wide variety of cultural
situations. Before presenting the details of the lexical conventions of TransLucid, we introduce
the Unicode character set which we use.

4.1 Background on Unicode

The Unicode character set is designed to cover all of the world’s character sets, both actual and
historical. In the “What is Unicode” summary on the Unicode Web site,

Unicode provides a unique number for every character, no mattter what the platform,
no matter what the program, no matter what the language.

www.unicode.org

For each Unicode character, there is a unique code point (number), a unique name, and a
set of character properties. For example, the entry for "O" in the Unicode Data database (www.
unicode.org/Public/UNIDATA/UnicodeData.txt) reads:

004F:LATIN CAPITAL LETTER O;Lu;0;L;;;;;N;;;;006F;

If we ignore the default values, then we can read this as:

• The code point is 004F, read as a hexadecimal number.

• The name is LATIN CAPITAL LETTER O.

• The general category is Lu, meaning upper-case letter.

• The bidirectional character type is L, meaning that in mixed left-to-right and right-to-left
text, it is left-to-right.

• The bidirectional mirrored property is N, meaning that in mixed left-to-right and right-to-left
text, it cannot be mirrored.

• The lowercase mapping is 006F, i.e., letter o.

The numbers for the code points range from 0000 to 10FFFF—read, once again, as hexadecimal
numbers—with the range from D800 to DFFF forbidden. The range 0000–FFFF is called the Basic
Multilingual Plane, as Unicode began as a 16-bit character set.

Each Unicode character belongs to a character class. The classes of interest here are:

Letter (L): any kind of letter from any language, including
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Letter, Case (Lc)

Letter, Lowercase (Ll)

Letter, Modifier (Lm)

Letter, Other (Lo)

Letter, Titlecase (Lt)

Letter, Uppercase (Lu);

below, in grammars, a Unicode Letter will be written Letter ;

Separator (Z): any kind of whitespace or invisible separator, including

Separator, Line (Zl)

Separator, Paragraph (Zp)

Separator, Space (Zs);

below, in grammars, a Unicode Separator will be written Separator ;

Symbol (S): math symbols, currency signs, dingbats, box-drawing characters, etc., including

Symbol, Currency (Sc)

Symbol, Modifier (Sk)

Symbol, Math (Sm)

Symbol, Other (So);

below, in grammars, a Unicode Symbol will be written Symbol ;

Number (N): any kind of numeric character in any script, including

Number, Decimal Digit (Nd)

Number, Letter (Nl)

Number, Other (No)

below, in grammars, a Unicode Number will be written Number.

Since a one-byte encoding cannot be used for Unicode, there are a number of possible ways of
encoding Unicode in a byte stream. The two that we retain are UTF-8 for input and output, and
UTF-32 for internal processing. The UTF-8 encoding uses a variable number of bytes to encode
Unicode code points, and works as follows:

0x00000000 - 0x0000007F:

0xxxxxxx

0x00000080 - 0x000007FF:

110xxxxx 10xxxxxx

0x00000800 - 0x0000FFFF:

1110xxxx 10xxxxxx 10xxxxxx

0x00010000 - 0x001FFFFF:

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The lead byte designates unambiguously how many bytes will follow, and the relevant bits are the
ones marked x.

The UTF-8 encoding ensures that transmission of information passes unambiguously from
little-ending machines to big-endian machines and back.

Internally, all processing is done using UTF-32, i.e., all characters are manipulated as 32-bit
unsigned integers.
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4.2 Comments

A comment in TransLucid consists of a // followed by all the characters on the rest of the line.

4.3 Identifier literals

An identifier (id) in TransLucid is of the following form:

id ::= ( Letter | ) ( Letter | Number | )+

Examples of uses of unusual characters in identifiers are H2O (water) and 3
2He (helium-3).

The following TransLucid keywords are reserved.

• declaration introductions:

data dim fun hd op var

assign host

• conditional expressions:

if then elsif else fi

• local declarations:

where end

• Boolean values:

true false

• special values:

sperror spaccess sptype spdim sparith

spundef spconst spmultidef sploop now

4.4 Operator literals

An operator (op) in TransLucid has the following form:

op ::= ( Symbol | ! | % | * | - | . | & | / | : )+

with six exceptions:

= : | ! . //

The following operators are defined in the initial header.

• arithmetic operators:

+ - * / %

• comparison operators:

< <= > >= == !=

• Boolean operators:

&& ||

• range operator:

..
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4.5 Other literals

The remaining symbols used in TransLucid are given below:

• declaration punctuation:

| = := ;;

• tuple manipulation:

[ : <- ]

• context manipulation:

# @

• intension manipulation:

↑ ↓ { }

• functional abstraction:

\ \\ ->

• functional application:

! .

• general grouping

( , )

4.6 Character literals

A character literal consists of a single cooked character between single quotes (’c’). In the syntax
for expressions, a character is written Character. A cooked character is either a printable Unicode
character, or one of the following recognized escape sequences:

\n for a newline (000A);

\r for a carriage return (000D);

\t for a horizontal tab (0009);

\’ for a single quote (0027);

\" for a double quote (0022);

\\ for a backslash (005C);

\uXXXX where XXXX are four hex digits, for a Unicode character in the Basic Multilingual Plane,
range 0000–FFFF;

\UXXXXXXXX where XXXXXXXX are eight hex digits, for a Unicode character not in the Basic Mul-
tilingual Plane, range 10000–10FFFF;

\xXX for a valid one-byte UTF-8 sequence, designating a Unicode character in the range 0000–
007F;

\xXX\xXX for a valid two-byte UTF-8 sequence, designating a Unicode character in the range
0080–07FF;
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\xXX\xXX\xXX for a valid three-byte UTF-8 sequence, designating a Unicode character in the
range 0800–FFFF;

\xXX\xXX\xXX\xXX for a valid four-byte UTF-8 sequeence, designating a Unicode character in the
range 10000–10FFFF.

When a cooked character is being printed out, the \XX escapes are not used. For a given
character c, its printed form becomes

c if c is printable;

\n if c is a newline;

\r if c is a carriage return;

\t if c is a horizontal tab;

\’ if c is a single quote;

\" if c is a double quote;

\\ if c is a backslash;

\uXXXX if c is in the range 0000–FFFF;

\uXXXXXXXX if c is in the range 10000–10FFFF.

4.7 Cooked string literals

A cooked string literal of length n, n > 0, consists of a sequence of n cooked characters in double
quotes ("c0 · · · cn−1"). In the expression syntax, a cooked string is written CookedString.

4.8 Raw string literals

A raw string of length n is a sequence of placed between back quotes (‘c0 · · · cn−1‘), uninterpreted,
valid Unicode characters, ranges 0000–D7FF and E000–10FFFF, with the exception of the backquote
(0060) itself. In the syntax for expressions, a raw string is written RawString.

4.9 Integer literals

In the syntax for expressions, integers are written Integer. Their syntax is outlined below:

• Negative integers are an integer literal preceded by character ~.

• Any integer starting with characters 1 through 9 is interpreted as base 10.

• The character 0 by itself corresponds to the value 0.

• An integer beginning with 01 followed by n more 1s is base-1 notation for the number n.

• An integer beginning 0 followed by a character in the range [2-9A-Za-z] uses that second
character as base-designator as follows:

– 2 through 9 mean bases 1 through 9, respectively;

– A through Z mean bases 10 through 35, respectively;

– a through z mean base 36 through 61, respectively.
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The subsequent characters are interpreted as digits in that base. For a number in base n,
only ‘digits’ from 0 to n− 1 may be used.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G H I J K L M N O P Q R S T U V

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
W X Y Z a b c d e f g h i j k l

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
m n o p q r s t u v w x y z

48 49 50 51 52 53 54 55 56 57 58 59 60 61

In computer science, the most commonly used bases are 2 (binary), 8 (octal) and 16 (hexadec-
imal); in everyday life, we use base 10 (decimal). For example, the number 39912 becomes

• 021001101111101000 in binary (base 2);

• 08115750 in octal (base 8);

• 0A39912 in decimal (base 10);

• 0G9BE8 in hexadecimal (base 16);

• 0K4JFC in vigesimal (base 20), as used by the Mayans:

�
„
‹
¸

• 0yB5C in sexagesimal (base 60), as used by the Babylonians:
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Chapter 5

Declarations

The behavior of a TransLucid program is cut up into a series of “instants”, numbered by integers
starting from 0. In each instant, a set of declarations is provided to the interpreter. In this chapter,
we summarize the different kinds of declaration.

It should be noted that in the overview, an instant was split into two, with a set of declarations
and a set of expressions to be evaluated. The set of expressions is in fact just syntactic sugar for
a set of declarations, with specific implementation in tltext and tlweb.

Below is an overview of all the declarations that can be added to the system. They are described
in other chapters as referenced.

5.1 Global-only declarations

The following declarations may not appear within a where clause.

data Declare a new data type.

datadecl ::= data id ;;

constructor Add a constructor for a declared data type.

constructordecl ::= constructor id id∗ guard = id ;;

The combined use of data and constructor covers the functionality of inductively defined data
types of Haskell and other functional languages. The arguments (id∗) are the parameters for type
constructors.

Example. The following declarations:

data BinaryTree ;;

constructor BinNode a b c [b : BinaryTree, c : BinaryTree] = BinaryTree ;;

constructor BinLeaf a = BinaryTree ;;

would result in the following declarations:

fun BinNode.a.b.c =

[type <- "BinaryTree", cons <- "BinNode", arg0 <- a, arg1 <- b, arg2 <- c] ;;

fun BinLeaf.a =

[type <- "BinaryTree", cons <- "BinLeaf", arg0 <- a] ;;

The following expression constructs a binary tree with root node 10, and left and right leaf nodes
4 and 15 respectively:

BinNode.10.(BinLeaf.4).(BinLeaf.15)
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host Add an external identifier to the interpreter (§6.3).

hostdecl ::= host id = hostarg ;;

hostarg ::= HostDim.int

| HostType.int

| HostFunc.int .int

Identifier id is being mapped to an integer index, provided by a registry external to the interpreter.
This mechanism allows dimensions, types and functions to be shared between TransLucid and the
host environment, including other TransLucid systems.

• HostDim: There is a dimension registry that has provided a new number for this identi-
fier, and TransLucid is being told of this mapping, and that this identifier should now be
considered to be a dimension.

• HostType: There is a host-language atomic-type registry that has provided a new number
for this identifier, and TransLucid is being told of this mapping, and that this identifier
should now be considered to be an atomic type.

It is assumed that, for type T , function construct_T , of arity 1, will be added, once T has
been added. An additional definition will have to be given to construct_literal, informing
it of the new construct_T .

• HostFunc: There is a function—whose address is determined by the loader—in the current
interpreter for this identifier, and TransLucid is being told of the mapping from identifier
to address, and that this identifier should now be considered to be a function whose arity is
the second integer.

The function id is applied to its arguments as id!E if its arity is 1, or id!(E1, . . . , En), if
its arity is n ≥ 1.

op Add an operator to the interpreter (§6.3).

opdecl ::= op op = oparg ;;

oparg ::= OpPostfix.string .bool

| OpPrefix.string .bool

| OpInfix.string .bool .assoc.int

Symbol op is mapped to function identifier id , along with information for the parser.

• OpPostfix: A postfix operator is being declared to map to an identifier, to be interpreted
as a function. The second argument states whether the function is call-by-name (true) or
call-by-value (false).

• OpPrefix: A prefix operator is being declared to map to an identifier, to be interpreted
as a function. The second argument states whether the function is call-by-name (true) or
call-by-value (false).

• OpInfix: An infix operator is being declared to map to an identifier, to be interpreted as a
function. The second argument states whether the function is call-by-name (true) or call-
by-value (false). The third argument is the associativity (assocn, assocl, assocr) and
the last argument is the precedence level.
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hd Add a hyperdaton, a multidimensional, physical data structure providing an interface with
the external world.

hddecl ::= hd id guard = hdarg ;;

hdarg ::= HdIn.string

| HdOut.string

The part of hyperdaton id defined by guard is declared to come from (input) or go to (output) a
physical location.

• HdIn: An input hyperdaton is being declared, with a given source, given as a URL in a
string. The guard specifies when this source is valid, which means that an input hyperdaton
could have several sources for different regions.

• HdOut: An output hyperdaton is being declared, with a given sink, given as a URL in a
string. The guard specifies when this sink is valid, which means that an output hyperdaton
could have several sinks for different regions.

MISSING: Hyperdatons are not implemented.
CLEANUP: Hyperdatons need to be redesigned.

assign Demand that the cells in an output hyperdaton be filled using expressions containing
variables defined by input hyperdatons or by the system of equations.

assigndecl ::= assign id guard := E ;;

The part of output hyperdaton id defined by guard is filled in by evaluating expression E.

5.2 Global or local declarations

In this section are declarations which may appear inside a where clause.

dim Declare an identifier to be a local dimension (§6.4.10).

dimdecl ::= dim id ( <- E )? ;;

var Add a declaration for a variable (§7.1).

vardecl ::= var id guard = E ;;

fun Add a declaration for a function (§7.2).

fundecl ::= fun id params guard = E ;;
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Chapter 6

Expressions

The evaluation of expressions in TransLucid takes place in a context-dependent manner, leading
to two implications. The first is that the set of TransLucid primitives is larger than in other
languages, as the context needs to be taken account by these primitives. The second is that the
context-dependent evaluation gives a much greater flexibility in the interactions between the host
language and TransLucid.

The presentation of expressions given in this chapter will therefore be made at a leisurely pace,
bottom-up, covering all of the details necessary to understand even the meaning of a literal or a
data operator, which are themselves unconventional.

6.1 Syntax

An expression is written E, and its concrete syntax is given below:

E ::= atomic
| id identifier
| E op postfix operator
| op E prefix operator
| E op E infix operator
| # context
| if E then E else E fi conditional
| E @ E context perturbation
| [ E <- E , . . . , E <- E ] tuple builder
| \_ { E , . . . , E } ( id , . . . , id ) -> E base abstraction
| E . ( E , . . . , E ) base application
| ↑{E, . . .} E intension creation
| ↓E intension evaluation
| \ { E , . . . , E } id -> E call-by-value abstraction
| E ! E call-by-value application
| \\ { E , . . . , E } id -> E call-by-name abstraction
| E E call-by-name application
| E where localdecls end local declarations

localdecls ::= dimdecl
| vardecl
| fundecl

where atomic corresponds to an atomic literal and op corresponds to declared operator symbols.
When parsing, TransLucid considers that postfix operators bind higher than all others, followed

by prefix operators. Infix operators can have different binding precedence levels, which must be
specified when they are declared.
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6.2 Atomic values

In TransLucid, an atomic value is a pair consisting of a host-language type—itself defining a set
of concrete values—and one of those concrete values. Here is the concrete syntax.

atomic ::= special

| bool

| int

| char

| rawString

| cookedString

| id rawString

| id cookedString

The first six cases correspond to values of the predefined types, special, bool, intmp, uchar and
ustring. The last two cases each correspond to a single lexeme, with no intervening whitespace.

6.2.1 Predefined type literals

As mentioned above, the predefined types do not require a type prefix.

Specials

Special values are used by the system to encode erroneous behavior during the evaluation of an
expression. The set of possible values is quite restricted:

sperror An error occurred.

spaccess You can’t get there from here.

sptypeerror A type error occurred.

spdim Invalid dimension.

sparith Arithmetic error.

spundef Undefined variable.

spconst Error building constant.

spmultidef Multiple definitions of a variable.

sploop A loop has been detected.

For each of these values v, the value special"v" is the same as v.

Booleans

Boolean values, or truth values, are used by conditional expressions. There are two possible values:

true

false

For each of these values v, the value bool"v" is the same as v.

Other predefined types

Literals of type intmp, uchar and ustring are presented in detail in Chapter 4.
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6.2.2 Literals with type prefix

Suppose a value belongs to a type whose typename is T and for which the representation of
the concrete value as an interpreted string literal is "v" (or ‘v‘). Then the canonical textual
representation of the atomic value is T"v" (or T‘v‘), and it can appear as such in a program or
be printed as such as output.

The parsing of such an atomic value takes place by executing construct_literal!"T"!"v",
which means applying function construct_literal to the arguments "T" and "v". For example,
the expression

cheese"mascarpone"

becomes

construct_literal!"cheese"!"mascarpone"

where construct_literal is a function taking two string literals as argument, one for the type-
name and the other for the concrete value. The adding of new host-language types and the
operators to manipulate values belonging to these types is given in Chapter 5.

The type name of a value is provided by the print typename function. Hence

print_typename!(cheese"mascarpone")

should yield

"cheese"

The concrete value of a literal is provided by the print function. Hence

print!(cheese"mascarpone")

should yield

"mascarpone"

Note that the functions construct_T , print typename and print are all context-dependent,
so we could imagine that these could yield different results under different situations.

Suppose, for example, that the construct_intmp function had been extended so that it could
read numbers in textual form in different languages, then we could imagine that the following
input

%%

intmp"eleven" @ [intstring <- true, lg <- "en"] ;;

intmp"dix-neuf" @ [intstring <- true, lg <- "fr"] ;;

could yield

11

19

Similarly, output of numbers, or of any other types, could be made context-dependent. Note that
this is not currently implemented. Note also that once a literal is created, it remains as it was
when it was created. The only potential context-dependence is upon its creation.
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6.3 Operator symbols

There are no predefined operator symbols in TransLucid, although there is a standard header
called header.tl, loaded by default by tltext, which defines a number of infix operators:

+ mapping to plus, implemented for intmp and ustring.

- mapping to minus, implemented for intmp.

* mapping to times, implemented for intmp.

/ mapping to div, implemented for intmp.

% mapping to mod, implemented for intmp.

< mapping to lt, implemented for intmp.

<= mapping to le, implemented for intmp.

> mapping to gt, implemented for intmp.

>= mapping to ge, implemented for intmp.

== mapping to eq, implemented for bool, intmp, uchar, ustring.

!= mapping to ne, implemented for bool, intmp, uchar, ustring.

&& mapping to andalso, implemented for bool.

|| mapping to orelse, implemented for bool.

.. mapping to range, implemented for intmp.

6.4 The evaluation of expressions

Like in all languages derived from ISWIM, a program in TL is an expression. All TL expressions are
manipulated in an arbitrary-dimensional context, which corresponds to an index in the Cartesian
coördinate system. As an expression is evaluated, the context may be queried, dimension by
dimension, in order to produce an answer. In so doing, other expressions may need to be evaluated
in other contexts.

6.4.1 Constants

The simplest expression in TL is the constant. If we consider expression ‘42’, its value is 42,
whatever the context. Below, we show the value of expression ‘42’ if we allow dimension 0 to vary
in N.

dim 0 →
42 0 1 2 3 4 5 · · ·

42 42 42 42 42 42 · · ·

What this table means is that in context {0 7→ 0}, i.e., where dimension 0 takes on the value of 0,
the value of expression ‘42’ is 42. The same holds true for all contexts {0 7→ i}, where i ∈ N.
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6.4.2 Variables

Variables are identifiers denoting objects which vary with the context. Suppose that variable X

defines a stream 〈x0, x1, . . .〉 varying in dimension 0, then we can see below how the value of
expression ‘X’ varies if we allow dimension 0 to vary in N.

dim 0 →
X 0 1 2 3 4 5 · · ·

x0 x1 x2 x3 x4 x5 · · ·

What this table means is that in context {0 7→ 0}, i.e., where dimension 0 takes on the value of 0,
the value of expression ‘X’ is x0. In general, in all contexts {0 7→ i}, where i ∈ N, the value of ‘X’
is xi.

6.4.3 Pointwise operators

As in all languages, TL expressions allow the use of operators such as + for addition, × for
multiplication, and so on. In TL, these operators are base functions, whose evaluation does
not vary with the context; they are applied pointwise to their arguments. In other words, in
a given context κ, the expression int plus.(X,Y), yields the sum of X in κ and of Y in κ. If
X = 〈x0, x1, . . .〉 and Y = 〈y0, y1, . . .〉 are both streams varying in dimension 0, then the variance
of ‘int plus.(X,Y)’ with respect to dimension 0 is given below.

dim 0 →
int plus.(X,Y) 0 1 2 3 · · ·

x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

In context {0 7→ i}, ‘int plus.(X,Y)’ has value xi + yi, where i ∈ N.
From now on, to simplify the presentation, all the standard binary operators over the integers

will be presented in infix format, i.e., we will write ‘X+Y’ instead of ‘int plus.(X,Y)’.

6.4.4 Querying the context

In TL, the context is itself a base function, written #. For it to be possible for the context to affect
the result of the evaluation of an expression, the context must be queried : the expression ‘#.0’
means applying the context to dimension 0 to retrieve the corresponding ordinate. Below we show
how the value of ‘#.0’ varies when we let dimension 0 vary:

dim 0 →
#.0 0 1 2 3 4 5 · · ·

0 1 2 3 4 5 · · ·

In, say, context {0 7→ 4}, the value of ‘#.0’ is 4. In fact, for all contexts {0 7→ i}, where i ∈ N, the
value of ‘#.0’ is i.

Now that the context can be queried, we can write expressions that are dependent on the
context. Here is the evaluation of expression ‘#.0 + #.1’ with respect to dimensions 0 and 1.

dim 0 →
#.0 + #.1 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 0 1 2 3 4 5 · · ·
1 1 2 3 4 5 6 · · ·
2 2 3 4 5 6 7 · · ·
...

...
...

...
...

...
...

. . .

In context {0 7→ i, 1 7→ j}, for all i, j ∈ N, ‘#.0 + #.1’ has value i+ j.
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6.4.5 Tuples

In TL, a tuple is a base function, defined as a set of (dimension, value) pairs. For example, ‘[0
<- #.0 + 1, 1 <- #.1 + 3].0’ varies as follows in dimensions 0 and 1:

dim 0 →
[0 <- #.0 + 1, 1 <- #.1 + 3].0 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 1 2 3 4 5 6 · · ·
1 1 2 3 4 5 6 · · ·
2 1 2 3 4 5 6 · · ·
...

...
...

...
...

...
...

. . .

As for ‘[0 <- #.0 + 1, 1 <- #.1 + 3].1’, it varies as follows in dimensions 0 and 1:

dim 0 →
[0 <- #.0 + 1, 1 <- #.1 + 3].1 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 3 3 3 3 3 3 · · ·
1 4 4 4 4 4 4 · · ·
2 5 5 5 5 5 5 · · ·
...

...
...

...
...

...
...

. . .

6.4.6 Changing the context

If the context can be queried in TL, then it also needs to be changeable. This is done using the
‘@’ operator, which takes a tuple as parameter and uses it to change the current context before
continuing with the evaluation of the expression. Below, the expression ‘#.0 + #.1’ is evaluated
in a new context, which is created by incrementing the 0-ordinate by 1.

dim 0 →
(#.0 + #.1) @ [0 <- #.0 + 1] 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 1 2 3 4 5 6 · · ·
1 2 3 4 5 6 7 · · ·
2 3 4 5 6 7 8 · · ·
...

...
...

...
...

...
...

. . .

Expression ‘(#.0 + #.1) @ [0 <- #.0 + 1]’ therefore evaluates to i + j + 1 in context {0 7→
i, 1 7→ j}.

6.4.7 Factorial: version one

TL, of course, needs variables, defined through equations. We introduce these with the factorial
function, presented here as a variable varying in dimension 0, whose first few entries can be found
below:

dim 0 →
fact 0 1 2 3 4 5 6 7 · · ·

1 1 2 6 24 120 720 5040 · · ·

The definition in TL is recursive, with a base case and an inductive case:

var fact = if #.0 == 0 then 1

else #.0 * (fact * [0 <- #.0 - 1]) fi ;;
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6.4.8 Ackermann: version one

The Ackermann function is one of the first recursive functions discovered that is not primitive
recursive. It grows so fast that in general it cannot be computed once its first argument is greater
than 3. Here it is presented as a variable varying in dimensions 1 and 0.

dim 0 →
ack 0 1 2 3 4 5 · · ·

dim 1 ↓ 0 1 2 3 4 5 6 · · ·
1 2 3 4 5 6 7 · · ·
2 3 5 7 9 11 13 · · ·
3 5 13 29 61 125 253 · · ·
4 13 65533 · · ·
5 65533 · · ·
...

. . .

Here is the definition for Ackermann in TL:

var ack = if #.1 == 0 then #.0 + 1

elsif #.0 == 0 then ack @ [1 <- #.1 - 1, 0 <- 1]

else ack @ [1 <- #.1 - 1, 0 <- ack @ [0 <- #.0 - 1]] fi ;;

In the general (else) case, note that the nested context change is only changing the value for
dimension 0, since the value for dimension 1 need not be changed. This is similar to what happens
with differential equations, in which only the dimensions of relevance are written down.

6.4.9 Standard functions

A function can take any of three kinds of parameter: base parameters, value parameters and named
parameters, respectively introduced by ‘.’, ‘!’ and a space. Below are some standard TL functions.

fun index!d = #.d + 1 ;;

fun first.d X = X @ [d <- 0] ;;

fun next.d X = X @ [d <- #.d + 1] ;;

fun fby.d X Y = if #.d == 0 then X else Y @ [d <- #.d - 1] fi ;;

fun wvr.d X Y = if first.d Y

then fby.d X (wvr.d (next.d X) (next.d Y))

else wvr.d (next.d X) (next.d Y) fi ;;

The function index takes a single value parameter d, and evaluates the body ‘#.d + 1’ in the
context in which the function is applied, not created.

The function first takes two parameters, a base parameter d, and a named parameter X. The
latter is assumed to vary in the dimension d, and the body is evaluated in the context in which
the function is applied, thereby pulling the zeroth element of X in dimension d.

The function next also takes a base parameter d and a named parameter X. It shifts all of X

one step “to the left”.
The function fby takes three parameters, one base parameter d, and two named parameters,

X and Y. It shifts Y one slot “to the right” and inserts the zeroth element of X.
If A = 〈a0, a1, a2, . . .〉 and B = 〈b0, b1, b2, . . .〉, then

dim d →
0 1 2 3 4 5 · · ·

index!d 1 2 3 4 5 6 · · ·
first.d A a0 a0 a0 a0 a0 a0 · · ·
next.d A a1 a2 a3 a4 a5 a5 · · ·
fby.d A B a0 b0 b1 b2 b3 b4 · · ·
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The last standard function is wvr, which takes one base parameter d, and two named parame-
ters, X and Y. It is a filter in the d dimension. It returns a stream in the d dimension that retains ele-
ments of the X input when the corresponding Y element is true. If B = 〈T, F, T, T, F, T, T, F, T, . . .〉,
then

dim d →
0 1 2 3 4 5 · · ·

wvr.d A B a0 a2 a3 a5 a6 a8 · · ·

6.4.10 Factorial: version two

If we wish to write factorial as a function, we write it as taking a base parameter.

fun fact.n = F

where

dim d <= n ;;

var F = fby.d 1 (index!d * F) ;;

end ;;

It uses a local dimension d, which is initially set to n. The stream F varies in dimension d. Note
that index!d increments the d-ordinate, while the second argument of fby.d decrements the
d-ordinate, so the two cancel each other out, yielding #.d.

6.4.11 Ackermann: version two

Ackermann takes two base parameters, and is defined using two local dimensions.Lhash

fun ack.m.n = A

where

dim dm <- m

dim dn <- n

var A = fby.dm (index!dn)

(fby.dn (next.dn A) (A @ [dn <- next.dm f]))

end ;;

Note the replacement of all but one explicit manipulation of dimensions by the use of relative
functions index, next and fby.

6.4.12 Sieve of Eratosthenes

The sieve of Eratosthenes generates a stream in dimension d of the prime numbers. It is built
using a local dimension dp, and presented below as a two-dimensional table. The zeroth row is
the naturals ≥ 2, and each subsequent row is the previous row without the multiples of the zeroth
element of the previous row. The sequence of primes is formed by the zeroth column.

dim dp →
S 0 1 2 3 4 5 6 7 · · ·

dim d ↓ 0 2 3 4 5 6 7 8 9 · · ·
1 3 5 7 9 11 13 15 17 · · ·
2 5 7 11 13 17 19 23 25 · · ·
3 7 11 13 17 19 23 29 31 · · ·
...

...
...

...
...

...
...

...
...

. . .

fun sieve.d = S

where

dim dp <- 0 ;;
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var S = fby.d (#.dp + 2)

(wvr.dp S (S % (first.dp S) != 0)) ;;

end ;;

6.4.13 Matrix multiplication

We consider a more elaborate example, of multiplying two matrices, Arow:m×col:p and Brow:p×col:n,
each varying in dimensions col and row, where the number of columns of A equals p, as does the
number of rows of B. The expression below defines their multiplication:

multiply.row.col.p A B = W

where

fun multiply.dr.dc.k X Y = W

where

dim d <- 0 ;;

var Xp = rotate.dc.d X ;;

var Yp = rotate.dr.d Y ;;

var Z = Xp * Yp ;;

var W = sum.d.k Z ;;

fun rotate.d1.d2 X = X @ [d1 <- #.d2] ;;

fun sum.dx.n X = Y @ [dx <- n]

where

var Y = fby.dx 0 (X + YX) ;;

end ;;

end ;;

end ;;

In the function multiply, the formal parameters X and Y are assumed to vary with respect to
formal parameters dr (row) and dc (column), while formal parameter k corresponds to the number
of columns in X and the number of rows in Y. Here is the meaning of the other identifiers:

• d is an additional, temporary dimension;

• Xp corresponds to changing variance in the dr and dc dimensions in X to variance in the dr

and d dimensions;

• Yp corresponds to changing variance in the dr and dc dimensions in Y to variance in the d

and dc dimensions;

• Z is a 3-dimensional data structure corresponding to the pointwise multiplication of Xp and Yp;

• W corresponds to the collapsing through summation of the first k entries in the d direction
of Z;

• function rotate.d1.d2 X changes variance of X in dimension d1 to variance in dimension d2;

• function sum.dx.n X adds up the first n elements in direction dx of stream X.

6.4.14 Streams of functions

The local function pow.n returns a function, namely the n-th–power function. Its definition uses
a local dimension dp, and P is defined to be a stream of the powers of m.

fun pow.n = P

where

dim d <- n ;;

var P = fby.d (\_ m -> 1) (\_ {d} m -> m * P.m) ;;

end ;;
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The explicit {d} in the second abstraction ensures that the d-ordinate needed to evaluate P within
the abstraction is frozen at the time of creation of the abstraction. Here is the table for P:

dim d →
P 0 1 2 · · ·

λbm→ m0 λbm→ m1 λbm→ m2 · · ·

6.4.15 Taylor series expansion

With streams of functions, we can compute the Taylor series expansion for a function f around
point a for point x.

∞∑
n=0

f (n)(a)

n!
(x− a)n

Function taylor takes as input a stream derivs of derivatives of f at point a in direction d.

fun taylor.d.a.x derivs = T

where

var T = sum.d.(index!d) D ;;

var D = derivs / (fact.(#.d)) * (pow.(#.d).(x-a)) ;;

end ;;

The Taylor series expansion for the sine function around integral multiples of 2π yields:

taylor.d.0.x sinderivs

where

var sinderivs = fby.d 0 (fby.d 1 (fby.d 0 (fby.d (~1) sinderivs))) ;;

end ;;

6.4.16 Explicit intensions

As was described in the background section, an intension is a mapping from contexts to values.
In TransLucid, intensions can be written explicitly, in order to freeze the ordinates of certain
dimensions from the context at creation, even though the intension will be evaluated in some
other context.

For example, suppose we wanted to refer to the temperature in Inuvik, wherever we happened
to be. Then we could write:

var tempAtLocation = ↑ {location} temperature ;;

var tempInuvik = tempAtLocation @ [location <- "Inuvik"] ;;

Then whenever variable tempInuvik would be written, the temperature would always give the
temperature in Inuvik, allowing all dimensions other than location to vary freely. Hence

( ↓ tempInuvik) @ [location <- "Paris", date <- #.date - 1] ;;

would give the temperature yesterday, for Inuvik, not Paris.
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Chapter 7

Equations and Bestfitting

The var and fun declarators were introduced in Chapter 5 and further developed in Chapter 6. In
this chapter, we present how having multiple declarations for the same variable or same function
is understood by the TransLucid interpreter.

7.1 Variables

A variable is defined by one or more equations, each guarded by the context in which it is valid.
The syntax for a variable declaration, adding one equation, is:

vardecl ::= var id guard = E ;;

guard ::= regionGuard? booleanGuard?

regionGuard ::= [ E :E , · · · ]
booleanGuard ::= | E

For a given variable id, there can be many declarations. What distingues them is the guards,
which define the context in which the relevant equation is applicable.

Each guard may contain a regionGuard component and a booleanGuard component.

• The regionGuard is a tuple in which each dimension is separated by its ordinate by a
colon (:); a region guard is valid if the current context is situated inside the geometric
region defined by the guard.

• The booleanGuard, introduced by a | (read “such that”), must be a Boolean expression,
evaluating either to true or false. The Boolean guard is only evaluated if the regionGuard
is valid.

Bestfitting is the process by which the most applicable equation of a variable is chosen from a
set of guarded equations. The most applicable equation from a set of definitions, is the one that is
valid in the smallest region of space, and is completely contained within all of the other applicable
definitions.

When a variable id is to be evaluated in a particular context κ, the guards of all declarations
for id are examined. The declarations whose guards are valid for context κ are deemed to be
applicable. Among the applicable declarations, should the region guard for A define a region
strictly contained in the region guard for B, then A is said to refine B; those declarations that are
refined by other declarations are removed, leaving those declarations with no refinement: these
are called the bestfit declarations.

Should there be exactly one bestfit declaration for id, then the expression to the right of the =

is evaluated in that context, and the result is returned. Should there be more than one bestfit
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declaration for id, the default behavior is to return a spmultidef value, meaning that the identifier
is multiply defined.

For example, given the following definitions of the variable foo:

foo [a : 0..10, b : 0..10] = 0;;

foo [a : 5, b : 5..7] = 42;;

in the context [a <- 5, b <- 5], the second will be chosen.
To the right of a dimension in the region guard, one can place

• an exact value,

• an atomic type,

• a range,

• an identifier declared as a type in a data declaration,

• an identifier declared as a constructor in a data declaration,

• or a predicate (a unary call-by-value function returning Booleans), effectively defining sub-
types.

It is possible to change the default behavior of how bestfits are dealt with, on a variable-by-
variable basis. This is done by adding a function:

fun var bestselect.a.b

where var is the name of the variable in question. It will be called one less time than there are
applicable definitions, with the combined value so far being passed as the a parameter, and the
next value to combine as the b parameter.

7.2 Functions

As for variables, there can be many declarations for the same function. The syntax for a function
declaration is:

fundecl ::= fun id param+ guard = E ;;

param ::= .? id

The function parameters can be base, call-by-value or call-by-name parameters, and are written
in the same style as the applications thereof, with a period, an exclamation mark or a space
respectively. The guard is written in the same manner as for variables, except that the parameters
may also be used as dimensions in the region guard.

For example, to declare a function f with two call-by-value parameters a and b, which must
both be integers, one can write:

fun f!a!b [a : intmp, b : intmp] = E1 ;;

where E1 is the expression which defines the value of the function.
After a function has been declared, further definitions of the same function with different bestfit

guards can be added. The parameter names can be left off, in which case they will be the same
as in the first definition. For example, to add another definition of f where a and b are strings,
write:

fun f [a : ustring, b : ustring] = E2 ;;
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7.3 Time

Since a TransLucid interpreter is a reactive system, with clearly defined and separate instants
enumerated by the time dimension, it is possible to modify the set of equations, and the meaning
of variables, over time. We describe here how this can be done.

The first thing to note is that at any given instant n, a new equation for identifier id can be
added. This is recorded in the TransLucid system using what we call a provenance dimension,
where provenance means “where it comes from”. Hence the provenance tag for this equation is
[time provenance <- n]. (Note that we envisage adding more provenance tags in the future,
but for the moment, only time is considered.)

The second thing to note is that the time dimension can be used in the region guard of the
equation, thereby limiting the time validity of this equation. It should be noted, however, that
one cannot “change the past”, i.e., prior instants in the time validity range are ignored. It is also
possible to state that the time validity is just for the current instant, using the special identifier now.
For example, if the current instant is 23

var x [time:now] = 42 ;;

var y [time:22..24] = 43 ;;

var z [time:24..26] = 44 ;;

var w = 45 ;;

defines

• variable x to have value 42 just in instant 23;

• variable y to have value 43 in instants 23 and 24, i.e., the current instant and the next, not
affecting instant 22;

• variable z to have value 44 in instants 24 through 26, i.e., for the three next future instants;

• variable w to have value 45 from instant 23 on.

Bestfitting with respect to time initially takes place ignoring the time provenance information.
This means, of course, that if the time dimension appears in some of the region guards, that it
will affect the bestfitting process.

Once a set of bestfit declarations is selected using the initial algorithm, if there are several
of these, then only the ones with the greatest ordinate for the time provenance dimension are
retained. In other words, more recent declarations have priority over older declarations.

7.4 Priority

It is possible to prioritize the declarations using a priority dimension. Currently, the TransLucid
interpreter recognizes one, called priority, whose ordinate must be an unsigned integer. (Note
that a range could be used, meaning that a declaration is valid for a range of priorities.) If this
dimension appears inside the region guard, then it affects the bestfitting process.

In the presence of a set of declarations of differing priorities, the bestfitter first considers the set
of declarations with the highest priority. If bestfitting yields nothing, then the next higher priority
is considered. This process is repeated until the bestfitter finds something—which includes multiple
definitions producing a spmultidef—or until there are no more declarations to be considered.

7.5 UUID

Each declaration in TransLucid is assigned a Universal Unique Identifier (UUID), a 128-bit number
usually printed as a 32-hex-digit number (with lower-case a through f). When the interpreter is
in --uuid mode, the user is informed of the UUIDs that have been assigned to each declaration.
As a result, it becomes possible for these to be edited directly.
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Two new declarations are introduced.

replDecl ::= repl uuid decl

delDecl ::= del uuid ;;

In both cases, the uuid must correspond to an existing declaration. In the first case, the existing
declaration is replaced, from this instant on (but not affecting previous instants) with the new
declaration decl, which must be consistent with the previous one (variables to variables, functions
of m parameters to functions of m parameters, etc.) In the second case, the existing declaration
is deleted, once again, from this instant on and without affecting previous instants.

This mechanism will probably be more useful when using the libtl library directly, perhaps
through a browser-editor interface, rather than with tltext.
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